Thermodynamics Problems And Solutions Pdf

Thermodynamics Problems And Solutions Pdf 3,8/5 5859 reviews

1. Based on graph P-V below, what is the ratio of the work done by the gas in the process I, to the work done by the gas in the process II?

Thermodynamics and Chemistry Second Edition Version 5, May 2014 Howard DeVoe Associate Professor of Chemistry Emeritus University of Maryland, College Park, Maryland. The First Law of Thermodynamics Problems and Solutions - Free download as PDF File (.pdf), Text File (.txt) or read online for free. 3000 J of heat is added to a system and 2500 J of work is done by the system. In internal energy of the system. Known: Heat (Q) = +3000 Joule Work (W) = +2500 Joule. Reading Problems 3-1 → 3-7 3-49, 3-52, 3-57, 3-70, 3-75, 3-106, 3-9 → 3-11 3-121, 3-123 Pure Substances. a Pure Substance is the most common material model used in thermodynamics. – it has a fixed chemical composition throughout (chemically uniform) – a homogeneous mixture of various chemical elements or compounds can also be con. Processes (Ideal Gas) A steady flow compressor handles 113.3 m 3 /min of nitrogen (M = 28; k = 1.399) measured at intake where P1= 97 KPa and T1= 27 C. Discharge is at 311 KPa. The changes in KE and PE are negligible. For each of the following. Solving Thermodynamics Problems Solving thermodynamic problems can be made significantly easier by using the following procedure: 1. Summarize given data in own words, leave out unneeded information 2. Clearly understand/identify what is being asked for – draw a sketch showing interactions/states and identify a solution strategy. 2500 Solved Problems In Thermodynamics Pdf Pdf Thermodynamic Practice Problems However, when solving problems in thermodynamics involving heat transfer to a system, the heat transfer is usually given or is calculated by applying the first law, or the conservation of energy, to the system.

Known :

Process 1 :

Pressure (P) = 20 N/m2

Initial volume (V1) = 10 liter = 10 dm3 = 10 x 10-3 m3

Final volume (V2) = 40 liter = 40 dm3 = 40 x 10-3 m3

Process 2 :

Process (P) = 15 N/m2

Initial volume (V1) = 20 liter = 20 dm3 = 20 x 10-3 m3

Final volume (V2) = 60 liter = 60 dm3 = 60 x 10-3 m3

Wanted : The ratio of the work done by gas

Solution :

The work done by gas in the process I :

W = P ΔV = P (V2–V1) = (20)(40-10)(10-3 m3) = (20)(30)(10-3 m3) = (600)(10-3 m3) = 0.6 m3

The work done by gas in the process II :

W = P ΔV = P (V2–V1) = (15)(60-20)(10-3 m3) = (15)(40)(10-3 m3) = (600)(10-3 m3) = 0.6 m3

The ratio of the work done by gas in the process I and the process II :

0.6 m3 : 0.6 m3

1 : 1

2.

Based on the graph below, what is the work done by helium gas in the process AB?

Known :

Pressure (P) = 2 x 105 N/m2 = 2 x 105 Pascal

Initial volume (V1) = 5 cm3 = 5 x 10-6 m3

Final volume (V2) = 15 cm3 = 15 x 10-6 m3

Wanted : Work done by gas in process AB

Solution :

Chemical Thermodynamics Problems And Solutions Pdf

W = ∆P ∆V

W = P (V2 – V1)

W = (2 x 105)(15 x 10-6 – 5 x 10-6)

W = (2 x 105)(10 x 10-6) = (2 x 105)(1 x 10-5)

W = 2 Joule

3.

Based on the graph below, what is the work done in process a-b?

Known :

Initial pressure (P1) = 4 Pa = 4 N/m2

Final pressure (P2) = 6 Pa = 6 N/m2

Initial volume (V1) = 2 m3

Final volume (V2) = 4 m3

Wanted : work done I process a-b

Solution :

Work done by gas = area under curve a-b

W = area of triangle + area of rectangle

W = ½ (6-4)(4-2) + 4(4-2)

W = ½ (2)(2) + 4(2)

Pdf

W = 2 + 8

W = 10 Joule

4. Based on graph below, what is the work done in process A-B-C-A.

Physics Thermodynamics Problems And Solutions Pdf

Solution :

Work (W) = Area of the triangle A-B-C

W = ½ (20-10)(6 x 105 – 2 x 105)

W = ½ (10)(4 x 105)

W = (5)(4 x 105

)

W = 20 x 105

W = 2 x 106 Joule

5. An engine absorbs 2000 Joule of heat at a high temperature and exhausted 1200 Joule of heat at a low temperature. What is the efficiency of the engine?

Known :

Heat input (QH) = 2000 Joule

Heat output (QL) = 1200 Joule

Work done by engine (W) = 2000 – 1200 = 800 Joule

Wanted : efficiency (e)

Solution :

e = W / QH

e = 800/2000

e = 0.4 x 100%

e = 40%

6. An engine absorbs heat at 960 Kelvin and the engine discharges heat at 576 Kelvin. What is the efficiency of the engine.

Known :

High temperature (TH) = 960 K

Low temperature (TL) = 576 K

Wanted: efficiency (e)

Solution :

Efficiency of Carnot engine = 0.4 x 100% = 40%

Thermodynamics Practice Problems And Solutions Pdf

7. Based on the graph below, work done by the engine is 6000 Joule. What is the heat discharged by engine each circle?

Known :

Work (W) = 6000 Joule

Engineering Thermodynamics Problems And Solutions Pdf

High temperature (TH) = 800 Kelvin

Low temperature (TL) = 300 Kelvin

Wanted: heat discharged by the engine

Solution :

Carnot (ideal) efficiency :

Heat absorbed by Carnot engine :

W = e Q1

6000 = (0.625) Q1

Q1 = 6000 / 0.625

Q1 = 9600

Heat discharged by Carnot engine :

Thermodynamics Chemistry Problems And Solutions Pdf

Rise of the tomb raider lag fix patch download. Q2 = Q1 – W

Q2 = 9600 – 6000

Q2 = 3600 Joule

8. The efficiency of a Carnot engine is 40%. If heat absorbed at 727°C then what is the low temperature.

Known :

Efficiency (e) = 40% = 40/100 = 0.4

High temperature (TH) = 727oC + 273 = 1000 K

Wanted : Low temperature

Solution :

TL = 600 Kelvin – 273 = 327oC

9. Based on graph below, if the engine absorbs 800 J of heat, what is the work done by the engine.

Known :

High temperature (TH) = 600 Kelvin

Low temperature (TL) = 250 Kelvin

Heat input (Q1) = 800 Joule

Wanted: Work (W)

Solution :

The efficiency of Carnot engine :

Work was done by the engine :

W = e Q1

W = (7/12)(800 Joule)

W = 466.7 Joule

10. The high temperature of a Carnot engine is 600 K. If the engine absorbs 600 J of heat and the low temperature is 400 K, what is the work done by the engine.

Known :

Low temperature (TL) = 400 K

High temperature (TH) = 600 K

Heat input (Q1) = 600 Joule

Wanted: Work was done by Carnot engine (W)

Solution :

Thermodynamics Problems And Solutions Pdf Free

The efficiency of the Carnot engine :

Work was done by Carnot engine :

W = e Q1

W = (1/3)(600) = 200 Joule